MEDIA RELATIONS OFFICE
JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
PASADENA, CALIF. 91109. TELEPHONE (818) 354-5011
http://www.jpl.nasa.gov
Contact: Diane Ainsworth
FOR IMMEDIATE RELEASE
June 29, 1998
WATER HISTORY, ROCK COMPOSITION AMONG LATEST FINDINGS A YEAR AFTER MARS PATHFINDER
A year after the landing of Mars Pathfinder, mission scientists
say that data from the spacecraft paint two strikingly
different pictures of the role of water on the red planet, and yield surprising
conclusions about the composition of rocks at the
landing site.
"Many of the things that we said last summer during the excitement
after the landing have held up well," said Dr. Matthew
Golombek, Pathfinder project scientist at NASA's Jet Propulsion Laboratory
(JPL), Pasadena, CA. "But we have now had
more time to study the data and are coming up with some new conclusions."
Similar to on-going science results from NASA's Mars Global Surveyor
spacecraft currently in orbit around Mars,
Pathfinder data suggest that the planet may have been awash in water three
billion to 4.5 billion years ago. The immediate
vicinity of the Pathfinder landing site, however, appears to have been dry
and unchanged for the past two billion years.
Several clues from Pathfinder data point to a wet and warm early
history on Mars, according to Golombek. Magnetized
dust particles and the possible presence of rocks that are conglomerates
of smaller rocks, pebbles and soil suggest copious
water in the distant past. In addition, the bulk of the landing site appears
to have been deposited by large volumes of water,
and the hills on the horizon known as Twin Peaks appear to be streamlined
islands shaped by water.
But Pathfinder images also suggest that the landing site is essentially
unchanged since catastrophic flooding sent rocks
tumbling across the plain two billion years ago. "Since then this locale
has been dry and static," he said.
While the area appears to have been untouched by water for eons,
wind appears to have been steadily eroding rocks at
the landing site. Analysis of Pathfinder images shows that about about three
to five centimeters (one to two inches) of material
has been stripped away from the surface by wind, Golombek noted.
"Overall, this site has experienced a net erosion in recent
times," said Golombek. "There are other places on Mars that are
net 'sinks,' or places where dust ends up being deposited. Amazonis Planitia,
for example, probably has about one to two
meters (three to six feet) of fine, powdery dust that you would sink into
if you stepped on it."
Chemical analysis of a number of rocks by the alpha proton X-ray
spectrometer (APXS) instrument on Pathfinder's
mobile Sojourner rover, meanwhile, reveals an unexpected composition that
scientists are still trying to explain.
The current assessment of data from this instrument suggests that
all of the rocks studied by the rover resemble a type of
volcanic rock with a high silicon content known on Earth as andesite, covered
with a fine layer of dust. All of the rocks appear
to be chemically far different from meteorites discovered on Earth that
are believed to have come from Mars.
"The APXS tells us that all of these rocks are the same thing
with different amounts of dust on them," said Golombek. "But
images suggest that there are different types of rocks. We don't yet know
how to reconcile this."
When molten magma oozes up from a planet's mantle onto the surface
of the outer crust, it usually freezes into igneous
rock of a type that geologists call a basalt. This is typical on the floors
of Earth's oceans, as well as on the maria of the Moon
and in many regions of Mercury and Venus. By contrast, andesites typically
form on Earth in tectonically active regions when
magma rises into pockets within the crust, where some of its iron and magnesium-rich
components are removed, leaving rock
with a higher silicon content. "We don't believe that Mars has had
plate tectonics, so these andesites must have formed by a
different mechanism," Golombek said.
The rocks studied by Pathfinder most closely resemble andesites
found in Iceland and the Galapagos Islands, tectonic
spreading centers where plates are being pushed apart, said Dr. Joy Crisp,
an investigation scientist on the spectrometer
experiment at JPL. Andesites from these areas have a different chemical
signature from andesites formed at subduction zones,
mostly because wet ocean sediments carry more water down into the mantle
at the subduction zones. "On Mars, where the
water content is probably lower and there is no evidence of subduction,
we would expect a closer chemical similarity to
Iceland andesites," said Crisp.
The Martian rocks may have other origins, however. They could
be sedimentary and influenced by water processes; they
could be formed by melting processes resulting from a meteor impact; or,
a third alternative is that the rocks might be basaltic,
but covered by a silicon-rich weathering coating. "In any event, the
presence of andesites on Mars is a surprise, if it is borne
out as we study the data further," said Crisp. "Most rocks on
Mars are expected to be basalts lower in silicon. If these are in
fact andesites, they are probably not very abundant."
Pathfinder scientists are looking forward to more data from the
Thermal Emission Spectrometer instrument on the Mars
Global Surveyor to reveal more about the chemical composition of the planet's
surface, especially once the orbiting spacecraft
begins its prime circular mapping mission in spring 1999.
In other recent Pathfinder science findings, Dr. Steven Metzger
of the University of Nevada found direct evidence of
gusting winds called "dust devils" in images from Pathfinder's
lander. Such dust devils had been seen in some Viking orbiter
images and inferred from measurements of atmospheric pressure and winds
by other instruments on the Pathfinder lander, but
were not spotted in actual surface images until Metzger's discovery.
JPL planetary scientist Dr. Diana Blaney has been using data from
Pathfinder, other spacecraft missions and
ground-based observations to study weathering on Mars. Her work suggests
that Mars is uniformly covered by a fine coating
of dust formed by an unusual process involving meteor impacts and volcanic
gases that add sulfur.
NASA's next Mars missions, the 1998 Mars Climate Orbiter and Mars
Polar Lander, are in testing now for launch in
December and January, respectively. Whereas Pathfinder's science focus was
on exploring rocks with its mobile robotic
geologist, the Mars Polar Lander will focus on a search for water under
the planet's surface, equipped with a robot arm that
will dig into the soil at the landing site near the planet's south pole.
Launched on December 4, 1996, Pathfinder reached Mars on July
4, 1997, directly entering the planet's atmosphere and
bouncing on inflated airbags as a technology demonstration of a new way
to deliver a lander and rover to Mars. The lander
operated nearly three times its design lifetime of 30 days, while the rover
operated 12 times its design lifetime of seven days.
During the mission, the spacecraft relayed an unprecedented 2.3
gigabits of data, including 16,500 images from the
lander's camera, 550 images from the rover camera, 16 chemical analyses
of rocks and soil, and 8.5 million measurements of
atmospheric pressure, temperature and wind.
Mars Pathfinder was designed, built and operated by JPL for NASA's
Office of Space Science, Washington, DC. JPL is
a division of the California Institute of Technology, Pasadena, CA.
#####
6-26-98 DEA
#9867